P_H-ABHÄNGIGKEIT DER ¹³C-CHEMISCHEN VERSCHIEBUNGEN SECHSGLIEDRIGER STICKSTOFF-HETEROAROMATEN

E. BREITMAIER und K.-H. SPOHN

Aus dem Chemischen Institut der Universität Tübingen, 7400 Tübingen, Auf der Morgenstelle

(Received in Germany 4 December 1972; Received in UK for publication 19 December 1972)

Zusammenfassung – Die ¹³C-chemischen Verschiebungen der sechsgliedrigen Stickstoff-Heteroaromaten Pyridin, Pyrazin, Pyrimidin, Pyridazin, Chinolin und Isochinolin werden in wässrigen Lösungen in Abhängigkeit vom P_{H} -Wert gemessen. Die Messungen zeigen, daß sich bei der Protonierung des Stickstoffs die ¹³C-Signale der α -C-Atome nach höherem Feld, die der entfernteren C-Atome meist nach tieferem Feld verschieben. Die P_{H} -bedingten Verschiebungen können Beträge in der Größenordnung von 10 ppm erreichen. Die P_{H} -Abhängigkeiten der ¹³C-chemischen Verschiebungen der gemessenen sechs Heterocyclen folgen klassischen Titrationskurven, deren Wendepunkte die P_{K} -Werte der heterocyclischen Basen in guter Übereinstimmung mit anderen Meßverfahren ergeben.

Abstract – The ¹³C chemical shifts of the 6-membered nitrogen heteroaromatic compounds pyridine, pyrazine, pyrimidine, pyridazine, quinoline and isoquinoline have been measured as functions of $P_{\rm H}$ in aqueous solutions. On protonation of the nitrogen, the ¹³C signals of the C atoms in α position usually suffer an upfield shift; the signals of the more removed C atoms are mostly shifted to lower field. The $P_{\rm H}$ shifts can reach amounts in the order of 10 ppm. The $P_{\rm H}$ dependences of chemical shifts of the six heterocyclic compounds investigated follow classical titration curves, whose turning-points yield the $P_{\rm K}$ values of the bases in good agreement with other methods of measurement.

EINFÜHRUNG

Die ¹³C-chemischen Verschiebungen der sechsgliedrigen Stickstoff-Heteroaromaten Pyridin 1, Pyrazin 2, Pyrimidin 3, Pyridazin 4, Chinolin 5 und Isochinolin 6 sind bekannt.^{1,2} Die Daten stützen sich auf Messungen in reinen Flüssigkeiten gegen TMS als internem Standard sowie auf Messungen der mono- und diprotonierten Heteroaromaten als Sulfate in gesättigten wässrigen Lösungen gegen 3-Trimethylsilylpropan-1-natriumsulfonat als internem Standard.^{1,2}

Zahlreiche Stickstoffheterocyclen, darunter vor allem Naturstoffe, gehen nur bei bestimmten P_H-Werten optimal in wässrige Lösung. Andererseits ist Wasser für ¹³C-NMR-Messungen wegen des Fehlens störender Eigensignale das günstigste Lösungsmittel, insbesondere, wenn wenig Substanz zur Verfügung steht und deshalb zur Verbesserung des Signal: Rauschen Verhältnisses die Spektren hunderttausendfach akkumuliert werden müssen. Wenn es notwendig ist, die 13C-NMR-Spektren dissoziabler oder assoziabler Verbindungen in wässrigen Lösungen zu messen, so ist die Kenntnis des P_H-Verhaltens der ¹³C-Signale eine Hilfe bei der Signalzuordnung. Aus diesen Gründen wird hier die P_H-Abhängigkeit der ¹³Cchemischen Verschiebungen von Pyridin 1 und seinen Benzologen 5, 6 sowie von Diazinen 2-4 in wässrigen Lösungen vermessen.

EXPERIMENTELLES

Als Proben dienten 0.5 molare wässrige Lösungen der Heterocyclen, im Falle von Chinolin und Isochinolin 0.5 molare Lösungen in Wasser (70 Vol%) – Aceton (30 Vol%). Die $P_{\rm H}$ -Werte wurden bei 25° mit einem $P_{\rm H}$ -Meter (Metrohm E 512) unter Verwendung einer Glaselektrode (Metrohm EA 121) gemessen und im Bereich zwischen $P_{\rm H} = 8$ und $P_{\rm H} = 0$ durch Titration mit 6 n HCl aus einer Feinbürette eingestellt. Die Elektrode wurde mit Zitrat-Salzsäure Puffer ($P_{\rm H} = 4.00$) und Phosphatpuffer ($P_{\rm H} = 7.00$) geeicht.

Zur Messung wurden 2 ml Lösung in ein NMR-Probenrohr mit 10 mm Innendurchmesser gebracht. In diesem Probenrohr wurde mit Hilfe zweier durchbohrter Teflonstopfen eine Kapillare mit 5 mm Innendurchmesser zentriert, die eine Lösung von 2% 1,4-Dioxan in Deuteriumoxid (99.5%) enthielt. 1,4-Dioxan diente als externer Standard, Deuteriumoxid zur Stabilisation des Feld/ Frequenz-Verhältnisses. Zur Messung der Lösungsmittelverschiebungen bei Chinolin und Isochinolin im System Aceton-Wasser wurden 0.5 molare Lösungen von Chinolin und Isochinolin in Aceton-Wasser-Gemischen der aus Abb 7 und Abb 8 ersichtlichen Zusammensetzung verwendet.

Die protonen-breitbandentkoppelten ¹³C-NMR-Spektren wurden mit einem Bruker-HFX-90 NMR-Spektrometer (22.628 MHz für ¹³C. 90 MHz für ¹H und 13 MHz für ²H-Stabilisation) unter Akkumulation der Impulsinterferogramme (Impulsbreite 4 μ sec. Impulsintervall 0.4 sec entsprechend 100 Hz/cm) mit einem Fabritek 1074 Datenspeicher (4K) und anschließender Fourier-Transformation und Berechnung der "Magnitude"-Spektren³ mit einem Digital-PDP-8-I-Rechner (4K) erhalten.

Die chemischen Verschiebungen wurden als Adressendifferenzen digital abgelesen (Genauigkeit ± 1 Adresse). Bei 5000 Hz pro 2048 Adressen und 22.628 MHz ergibt sich als Umrechnungsfaktor 0.108 ppm/Adresse. Infolge des geringen Unterschiedes der Volumensuszeptibilitäten zwischen H₂O und D₂O, 0.016 · 10⁻⁶,⁴ liegt die Suszeptibilitätskorrektur für Dioxan in D₂O, $(2\pi/3) \cdot 0.016$ ppm.⁴ als externem Standard deutlich unterhalb der Meßgenauigkeit von ± 0.108 ppm.

Zwecks Vergleichbarkeit mit neueren Literaturdaten wurden die δ -Werte gegen Dioxan, δ_{Dioxan} , nach der Beziehung

$$\delta_{\rm TMS} = \delta_{\rm Dioxan} - 66.5 \,(\rm ppm)$$

auf externes TMS umgerechnet. Für genaue Vergleiche vergrößern sich die $\delta_{\rm TMS}$ -Beträge um eine Suszeptibilitätskorrektur von 0.05 ppm.⁴

ERGEBNISSE UND DISKUSSION

Die Messergebnisse sind in den Abb 1-6 graphisch dargestellt. Die Signalzuordnungen wurden bereits von Grant *et al.* beschrieben.^{1,2} Sie stützen sich auf die Korrelation berechneter Ladungsdichten und Bindungsordnungen mit ¹³C-chemischen Verschiebungen, auf den Vergleich von ¹³C-¹H-Kopplungskonstanten, sowie im Falle des Chinolins und Isochinolins auf die Messung von 5- und 7-Deuteriochinolin sowie 5- und 7-Deuterioisochinolin.²

Infolge schlechter Wasserlöslichkeit mussten Chinolin und Isochinolin im System Aceton-Wasser (30:70) vermessen werden. Da die Signale der C-Atome 4a, 5, 6, 7, 8 des Chinolins und 5, 6, 7, 8, 8a des Isochinolins sehr dicht beisammen liegen,

Abb 2. ¹⁸C-chemische Verschiebungen von Pyrazin in Abhängigkeit vom pH.

kann sich die Signalsequenz in Aceton-Wasser (30:70) gegenüber den reinen Verbindungen² für die genannten C-Atome infolge von Lösungsmitteleffekten ändern. Um trotzdem eine Signalzuordnung im System Aceton-Wasser zu treffen, wurden

Abb 1. ¹³C-chemische Verschiebungen von Pyridin in Abhängigkeit vom pH.

Abb 4. ¹³C-chemische Verschiebungen von Pyridazin in Abhängigkeit vom pH.

die Spektren von Chinolin und Isochinolin jeweils in reinem Zustand sowie 0.5 molar in Aceton-Wasser Gemischen mit Aceton-Konzentrationen zwischen 30 und 100 Vol % gemessen. Die Ergebnisse sind in den Abb 7 und 8 graphisch dargestellt. Man sieht, daß sich die ¹³C-Verschiebungen beim Übergang vom reinen Zustand in eine wasserfreie Acetonlösung um höchstens 0.3 ppm ändern. Mit zunehmendem Gehalt an Wasser erhält man dagegen Signalverschiebungen in der Größenordnung

Abb 6. ¹³C-chemische Verschiebungen von Isochinolin in Abhängigkeit vom pH.

von 1 ppm bei Verwendung desselben externen Standards für alle Messungen (2% Dioxan in D_2O). Im Falle des Isochinolins beobachtet man mit steigendem Wassergehalt ein Zusammenlaufen der Signale von C-7 und C-8. Im übrigen bleibt die Signalsequenz gleich (Abb 8). Chinolin zeigt dagegen mit steigendem Wassergehalt eine Überkreuzung der Signale von C-7 und C-8 sowie ein Zusammenlaufen der Signale von C-4a und C-8 (Abb 7). Bei allen übrigen Sechsring-Stickstoff-Heterocyclen, deren ¹³C-chemische Verschiebungen in Abhängigkeit vom P_H im folgenden beschrieben werden, ist die Signalzuordnung eindeutig.¹

Die P_H -Abhängigkeit der ¹³C-chemischen Verschiebungen des Pyridins zeigt beim Übergang von $P_H = 10$ nach $P_H = 1$ für die in bezug auf den basischen Stickstoff α -ständigen äquivalenten C-Atome 2 und 6 eine Hochfeldverschiebung um 7 ppm.

Abb 8. Lösungsmittel- und Konzentrationsabhängigkeit der ¹³C-chemischen Verschiebungen von Isochinolin.

Tieffeldverschiebungen um 3.5 ppm bzw. 10 ppm beobachtet man dagegen für die äquivalenten C-Atome 3 und 5 bzw. für C-4. Ein zumindest qualitativ entsprechendes Verhalten zeigen auch die Diazine Pyrazin, Pyrimidin und Pyridazin (Abb 2, 3, 4): Hochfeldverschiebungen für die

Signale der α -ständigen C-Atome, Tieffeldverschiebungen für die β -ständigen C-Atome. Die Beträge der Verschiebungen sind bei den Diazinen deutlich kleiner als bei Pyridin; im Falle der äquivalenten C-Atome 4 und 6 des Pyrimidins wird sogar ein schwach inverses Verhalten beobachtet

		1 C2	C3	C 4	C5	C 6	с 7	C 8	C 4a	C 8a	p _{Ka} NMR	Konzentration Mol/l	P _{Ka} Lit.
p _{ƙa} Pyrazin	p q	0.60 0.63	0.60° 0.63°		0-60° 0-63°	0-60° 0-63°					0.60 0.63	0-5	0-51-1-1 ⁷ 0-6 ⁸
p _{Ka} Pyridazin	p q		2.504	2:35¢ 2:38¢	2-35° 2-38°	2.50 ^d 2.39 ^d					2-42 2-39	0-5	2·24-2·97 2·33 ⁸
p _{Ka} Pyrimidin	p q	1.50		96, 1-80,	1-65 1-65	1-80' 1-66'				-	1-65 1-55	0.5	1·23-1·31 ⁷ 1·30 ⁸
p _{ka} Pyridin	ь <i>ч</i>	5-35° 5-34"	5:35 ^h 5:42 ^h	5:35 5:36	5-35 ^h 5-42 ^h	5:35° 5:34°					5:35 5:37	0-5	5.11-5.447 5.23 ⁸ 5.35-5.5 ⁹
Chinalia	a	4-55	4-40	4-50	4-55	4-55	4-50	$(a) 4.40^{i}$ $(b) 4.26^{i}$	$(a) 4.45^k$ $(b) 4.47^k$	4-55	4.49	0.54	3-97-4-967
	q	4-57	4-41	4-51	4-54	4.55	4.52	$(a) 4.45^{k}$ $(b) 4.47^{k}$	$(a) 4.40^{i}$ $(b) 4.26^{i}$	4-56	4.49	с. р	4-8-5-0°
	a 44	35	4.95	4-95	4-95	4-95	$(a) 4.90^{t}$ $(b) 4.93^{t}$	$(a) 5.00^{m}$ $(b) 4.98^{m}$	4-90	5-00	4-95	, V	5-36-5-427
P _{Ka} tsochmonn	b 5·(8	4.96	4.98	4·88	4.98	(a) 5-00 ^m (b) 4-98 ^m	(a) 4.90' (b) 4.93'	4.92	5-02	4.96		4.94° 5.4 ⁹
^a aus der grap ^b graphisch na ^{c-m 13} C-Signal ^{rin} 30 Vol%.	hische ch der le falle Acetor	n Wendej Henders n jeweils 1-Wasser-	punktsb on-Has zusamn -Lösung	estimur selbach nen gsmitte	nung n Gleicl Igemisc	nng h gemes	sen						

Tabelle 1. p_{Ka} -Werte einiger N-Heterocyclen aus der p_{H} -Abhängigkeit ihrer ¹³C-chemischen Verschiebungen

.

Abb 9. Bestimmung des P_x-Wertes von Pyridazin nach der Henderson-Hasselbach Gleichung.

(Abb 3). Zwischen $P_H = 1$ und $P_H = 0$ macht sich bei Pyrimidin und Pyridazin bereits die Diprotonierung bemerkbar. Die Protonierung der Stickstoffe des Chinolins und Isochinolins wirkt auf die ¹³C-chemischen Verschiebungen qualitativ entsprechend wie beim Pyridin. Bei der Ankondensation eines Benzolrings differenzieren sich die α - und β -C-Atome des Pyridinringes hinsichtlich der chemischen Verschiebung und des P_H-Verhaltens ihrer ¹³C-Signale. Die Protonierungsverschiebungen von C-2 im Chinolin und C-1 im Isochinolin sind kleiner, jene von C-8a des Chinolins und C-3 des Isochinolins wesentlich größer im Vergleich zu der für das C-2,6-Signal des Pyridins Protonierungsverschiebung beobachteten von +6.95 ppm.

Die β -ständigen C-Atome des Pyridinrings im Chinolin, C-3 und C-4a, werden bei der Protonierung des Stickstoffs im Vergleich zu C-3,5 des Pyridins weniger nach tieferem Feld verschoben. Für C-4 des Isochinolins beobachtet man eine stärkere Tieffeldverschiebung, für C-8a dagegen eine Hochfeldverschiebung.

Das γ -ständige C-Atom im Chinolin, C-4, verhält sich wie C-4 des Pyridins und erfährt bei der Protonierung eine Tieffeldverschiebung um 10.65 ppm im Gegensatz zu C-4a des Isochinolins, dessen ¹³C-Signal sich nur um 2.85 ppm nach tieferem Feld verschiebt.

Die ¹³C-Signale der aromatischen C-Atome 5-8 verschieben sich bei der Protonierung bis zu 7 ppm nach tieferem Feld, abgesehen von C-5 des Chinolins, dessen Signal sich bei der Protonierung um 7.5 ppm nach höherem Feld verschiebt.

Aus diesen Ergebnissen folgt, dass bei der Aufnahme der ¹³C-NMR-Spektren von N-Heterocyclen in wässriger Lösung mit starken P_{H} -Verschiebungen zu rechnen ist. Dadurch kann sich die Signalsequenz P_{H} -abhängig ändern, was die Signalzuordnung kompliziert. Andererseits ist die Kenntnis der P_{H} -Verschiebungen aber auch eine Zuordnungshilfe, beispielsweise die für α -ständige C-Atome generell beobachtete Hochfeldverschiebung bei Protonierung am Stickstoff.

Schliesslich folgt die P_H -Abhängigkeit der ¹³Cchemischen Verschiebungen dem Verlauf von Titrationskurven (Abb 1–6). Aus deren Wendepunkten lassen sich die P_R -Werte der hier vermessenen heterocyclischen Basen bestimmen. Eine genauere Auswertung der Messdaten ergibt die Anwendung der Henderson-Hasselbach Gleichung.^{5,6}

$$\mathbf{P}_{\mathrm{H}} = \mathbf{P}_{\mathrm{K}} + \lg \frac{\delta_{\max} - \delta}{\delta - \delta_{\min}}$$

Dabei entspricht δ_{max} der P_H-unabhängigen chemischen Verschiebung im sauren Bereich, δ_{min} der P_H-unabhängigen chemischen Verschiebung im alkalischen Bereich. Trägt man für jedes C-Atom den Betrag von

$$\log \frac{\delta_{\max} - \delta}{\delta - \delta_{\min}}$$

als Funktion des P_H -Werts auf, so ergibt sich der P_K -Wert einer Verbindung für jedes ihrer C-Atome als Schnittpunkt zweier Geraden. Dieser Schnittpunkt liegt bei Konsistenz der Meßreihe auf der Abszisse. Abb 9 illustriert diese ¹³C-NMR-spektroskopische P_K -Wert-Bestimmung für C-4,5 des Pyridazins. Wie Tab. 1 zeigt, ist die Übereinstimmung mit den nach anderen Meßverfahren erhaltenen P_K -Werten recht gut.

Danksagung-Wir danken dem Fonds der Chemischen Industrie für eine Sachbeihilfe.

LITERATUR

- ¹R. J. Pugmire und D. M. Grant, J. Am. Chem. Soc. 90, 697 (1968)
- ²R. J. Pugmire, D. M. Grant, M. J. Robins und R. K. Robins, *Ibid.* **91**, 6381 (1969)

- ³E. Breitmaier, G. Jung und W. Voelter, Angew. Chem. 83, 662 (1971)
- ⁴H. Suhr, Anwendungen der Kernmagnetischen Resonanz in der Organischen Chemie. S. 24, 25. Springer Verlag, Berlin, Heidelberg, New York (1965)
- ⁵E. G. Finer, *Macromolecules and Solids* in R. K. Harris, *Nuclear Magnetic Resonance*, Vol. 1, S. 281. The Chemical Society, London (1972)
- ⁶J. S. Cohen, R. I. Shrager, M. McNeel und A. N. Schechter, *Nature, Lond.* 228, 642 (1970)
- ⁷D. D. Perrin, Dissoziation Constants of Organic Bases in Aqueous Solution. Butterworths, London (1965)
- ⁸A. Albert, R. Goldacre und J. Phillips, J. Chem. Soc. 2240 (1948)
- ⁹C. Golumbic und M. Orchin, J. Am. Chem. Soc. 72, 4145 (1950)